(w) 291, 207 (s). Anal. Calcd for $C_{21}H_{22}N_2O_5$ (mol wt 382.4): C, 65.96; H, 5.80; N, 7.32. Found: C, 65.88; H, 5.91; N, 7.37.

Benzyl 4,6-O-Benzylidene- α -D-mannopyranosido-[2,3:5',6']pyrazan-2',3'-dione (27). Compound 24 (0.74 g, 2 mmol), diethyl oxalate (1.5 mL), and anhydrous ethanol (20 mL) were boiled on reflux for 20 h. Solvents were evaporated in vacuo, and the residue was treated with diisopropyl ether. The resulting crystals were filtered off and were recrystallized from hot dioxane by addition of 1 volume of tetrahydrofuran and 20 volumes of diisopropyl ether. Rapid stirring caused precipitation of an easily filterable form of 27: 0.7 g (85%); mp 297 °C; $[\alpha]^{22}$ -60° (c 1.75, dioxane); mass spectrum (240-280 °C), m/e 410, 409 (w), 319 (m),

Registry No. 1, 2873-29-2; 2, 79698-04-7; 3, 79698-03-6; 4, 81625-86-7; 5, 81625-87-8; 6, 81625-88-9; 7, 81625-89-0; 8, 81625-90-3; 9, 81625-91-4; 10, 72869-11-5; 11, 81625-92-5; 12, 81625-93-6; 13, 81625-94-7; 14, 81625-95-8; 15, 35905-39-6; 16, 81625-96-9; 17, 81625-97-0; 18, 81625-98-1; 19, 81625-99-2; 20, 81626-00-8; 21, 81626-01-9; 22, 72869-08-0; 22a, 81626-02-0; 23, 72869-09-1; 23a, 81655-20-1; 24, 81626-03-1; 25, 81626-04-2; 25a, 81626-05-3; 26, 81626-06-4; 27, 81655-21-2; NaN₃, 26628-22-8; CO₂, 124-38-9; HMPT, 680-31-9.

Amino-Protecting Reagents: New Promising Reagents for tert-Butoxycarbonylation, Benzyloxycarbonylation, and $[\beta$ -(Trimethylsilyl)ethoxy]carbonylation

Yasuyuki Kita, Jun-ichi Haruta, Hitoshi Yasuda, Keiko Fukunaga, Yoshiaki Shirouchi, and Yasumitsu Tamura*

Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan

Received December 2, 1981

A new method for the preparation of *tert*-butyl- (1d), benzyl- (1e), and (β -trimethylsilyl)ethyl α -methoxyvinyl carbonates (1f) has been devised. The reaction of these reagents with amino compounds proceeds rapidly under mild conditions to give the corresponding *N*-*tert*-butoxycarbonylated (*N*-Boc), *N*-benzyloxycarbonylated (*N*-Z), and *N*-[β -(trimethylsilyl)ethoxy]carbonylated (*N*-Tmseoc) compounds in quantitative yields. Twenty-two examples using amines, amino alcohols, and amino acids were presented.

We have described¹ a preparation of α -methoxyvinyl carbonates (1a-c) and their utility for carboalkoxylation and carboaryloxylation of amines. The high reactivity of the reagents under extremely mild conditions (generally performed at 0-20 °C for 1 min-3 h) prompted us to prepare the similar introducing reagents *tert*-butyl- (1d), benzyl- (1e), and (β -trimethylsilyl)ethyl α -methoxyvinyl carbonate (1f) for the *tert*-butoxycarbonylation,^{2,3} benzyloxycarbonylation,^{2,3w,x,4} and $[\beta$ -(trimethylsilyl)ethoxy]carbonylation,^{2,5} which are widely employed as useful aminoprotecting methods. However, the previous preparative method involving the reaction of bis[(carbomethoxy)methyl]mercury with the corresponding chloroformate failed entirely to give the alkyl α -methoxyvinyl carbonates 1d-f because of instability of the chloroformates.

We report here an efficient preparation of 1d-f and their potential utility for amino protection.

Preparation of Alkyl α -Methoxyvinyl Carbonates 1d-f. Although direct O-carboalkoxylation of the enolate of methyl acetate with the corresponding chloroformate seems to be a simple route to the reagents 1, complications were caused by the ambident nature of the enolate as observed in the preparation of isopropenvl carbonates.^{1b} Since then, we have succeeded^{1a} in the preparation of the α -methoxyvinyl carbonates (1a-c) involving the reaction of chlorocarbonate with bis[(carbomethoxy)methyl]mercury⁶ as the enolate equivalent of methyl acetate in refluxing toluene (method A, Scheme I). However, this method suffers from many difficulties in the preparation of 1d-f because of the instability of the chloroformate under the conditions used, the strict control of the reaction conditions needed, and the elaborate purification of the product from the reaction mixture.⁷ Success was finally

^{(1) (}a) Kita, Y.; Haruta, J.; Tagawa, H.; Tamura, Y. J. Org. Chem. 1980, 45, 4519. (b) Tamura, Y.; Haruta, J.; Okuyama, S.; Kita, Y. Tetrahedron Lett. 1978, 3737.

^{(2) (}a) Barton, J. W. In "Protective Groups in Organic Chemistry"; McOmie, J. F. W., Ed.; Plenum Press: London, 1973; Chapter 2. (b) Carpino, L. A. Acc. Chem. Res. 1973, 6, 191. (c) Shioiri, T. Yuki Gosei Kagaku Kyokaishi 1978, 36, 740. (d) Hardy, P. M. Chem. Ind. (London) 1979, 617. (e) Greene, T. W. "Protective Groups in Organic Synthesis"; Wiley: New York, 1981; Chapter 7.

^{(3) (}a) Anderson, G. W.; McGregor, A. C. J. Am. Chem. Soc. 1957, 79, 6180. (b) Schwyzer, R.; Sieber, P.; Kappeler, H. Helv. Chim. Acta 1959, 42, 2622. (c) Klee, W.; Brenner, M. Helv. Chim. Acta 1961, 44, 2151. (d) Carpino, L. A. J. Org. Chem. 1964, 29, 2820. (e) Woodward, R. B.; Heusler, K.; Gosteli, J.; Naegeli, P.; Oppolzer, W.; Ramage, R.; Ranganathan, S.; Vorbrüggen, H. J. Am. Chem. Soc. 1966, 88, 852. (f) Jones, J. H.; Yound, G. T. Chem. Ind. (London) 1966, 1722. (g) Frankel, M.; Ladkany, D.; Gilon, C.; Wolman, Y. Tetrahedron Lett. 1966, 4765. (h) Broadbent, W.; Morley, J. S.; Stone, B. E. J. Chem. Soc. C 1967, 2632. (i) Gross, H.; Bilk, L. Angew. Chem. Int. Ed. Engl. 1967, 6, 570. (j) Fujino, M.; Hatanaka, C. Chem. Pharm. Bull. 1967, 15, 2015. (k) Schnabel, E.; Herzog, H.; Hoffmann, P.; Klauke, E.; Ugi, I. Justus Liebigs Ann. Chem. 1968, 716, 175. (l) Guibé-Jample, E.; Bram, G.; Vilkas, M. Tetrahedron Lett. 1969, 3541. (m) Ragnarsson, U.; Karlsson, S. M.; Sandberg, B. E.; Larsson, L. E. Org. Synth. 1973, 53, 25. (p) Nagasawa, T.; Kuroiwa, K.; Narita, K.; Isowa, Y. Bull. Chem. Soc. Jpn. 1973, 46, 1269. (q) Itoh, M.; Hagiwara, D.; Kamiya, T. Tetrahedron Lett. 1975, 4393. (r) Pozdneev, V. F.; Khim. Prir, Soedin. 1974, 764; Chem. Abstr. 1975, 82, 156690. (s) Moroder, L.; Hallett, A.; Wünsch, E.; Keller, O.; Wersin, G. Hoppe-Seyler's Z. Physiol. Chem. Soc. Jpn. 1977, 50, 718. (u) Paquet, A. Can. J. Chem. 1975, 72775. (v) Scott, J. W.; Parker, D. Org. Prep. Proced. Int. 1980, 12, 242. (w) Kunieda, T.; Abe, Y.; Hirobe, M. Tetrahedron Lett. 1980, 21, 3065. (x) Kunieda, T.; Abe, Y.; Higuchi, T.; Hirobe, M. Tetrahedron Lett. 1980, 21, 3065. (x) Kunieda, T.; Abe, Y.; Higuchi, T.; Hirobe, M. Tetrahedron Lett. 1980, 21, 2057.

^{(4) (}a) Bergmann, M.; Zervas, L. Ber. 1932, 65, 1192. (b) Felix, A. M.; Jimenez, M. H.; Meienhofer, J. "Proceedings of the Fifth American Peptide Symposium"; Wiley: New York, 1977; p 532. (c) Paquet, A. Can. J. Chem. 1976, 54, 733. (d) Nagao, Y.; Seno, K.; Kawabata, K.; Miyasaka, T.; Takao, S.; Fujita, E. Tetrahedron Lett. 1980, 21, 841.

^{(5) (}a) Sieber, P. Helv. Chim. Acta 1977, 60, 2711. (b) Carpino, L. A.;
Tsao, J.-H.; Ringsdorf, H.; Fell, E.; Hettrich, G. J. Chem. Soc., Chem. Commun. 1978, 358. (c) Meyers, A. I.; Roland, D. M.; Comins, D. L.;
Henning, R.; Fleming, M. P.; Shimizu, K. J. Am. Chem. Soc. 1979, 101, 4732. (d) Carpino, L. A.; Sau, A. C. J. Chem. Soc., Chem. Commun. 1979, 514.

<sup>514.
(6)</sup> Lutsenko, I. F.; Foss, V. L.; Ivanova, N. L. Dokl. Akad. Nauk SSSR
1961, 141, 1107; Chem. Abstr. 1961, 56, 12920d.

Table I. Preparation of Alkyl a-Methoxyvinyl Carbonates 1d-f

Kita	et	al.

compd	R	yield, ^a %	bp (mmHg), ^b °C	$IR (CHCl_3), cm^{-1}$	'Η NMR (CDCl ₃), ^c δ
1d ^{<i>d</i>}	t-C ₄ H ₉	55	57-58 (4)	1760, 1670	1.48 (s, 9 H), 3.58 (d, $J = 3.5, 1$ H), 3.60 (s, 3 H), 3.76 (d, $J = 3.5, 1$ H)
1e ^e	$\mathbf{CH}_{2}\mathbf{C}_{6}\mathbf{H}_{5}$	73	105-107 (0.7)	1770, 1675	3.58 (s, 3 H), 3.62 (d, $J = 3.5, 1$ H), 3.82 (d, $J = 3.5, 1$ H), 5.08 (s, 2 H), 7.25 (s, 5 H)
1f ^f	$CH_2CH_2Si(CH_3)_3$	65	108 (10)	1760, 1675	0.06 (s, 9 H), 1.10 (brt, 2 H), 3.68 (s, 3 H), 3.72 (d, $J = 3.5, 1$ H), 3.81 (d, $J = 3.5, 1$ H), 4.30 (brt, 2 H)

^a Isolated yields were based on bis[(carbomethoxy)methyl]mercury. ^b Uncorrected boiling points are given. ^c J values are given in hertz. ^d Anal. Calcd for C₈H₁₄O₄: C, 55.16; H, 8.10. Found: C, 54.82; H, 8.24. ^e Exact mass calcd for C₁₁H₁₂O₄ 208.0733, found 208.0728. ^f Anal. Calcd for C₉H₁₈O₃Si: C, 49.51; H, 8.31. Found: C, 49.56; H, 8.61.

Method A

Method B

Hg(CH2CO2CH3)2 COCI₂ C5H5N NCCI СН3О -CI

Scheme I

achieved by using the reaction of bis[(carbomethoxy)methyl]mercury with phosgene⁸ in the presence of pyridine followed by treatment in situ with the corresponding alcohol (method B, Scheme I). Processes involving the reaction of phosgene with other bases such as triethylamine, dimethylaniline, 4-benzylpyridine, quinoline, and γ, γ' dipyridyl instead of pyridine were examined without satisfactory results. The characteristic point of the present method is the use of phosgene and alcohol in the presence of pyridine instead of the unstable chloroformate, and the reaction can be performed under mild conditions. The structures of 1d-f were proved by microanalyses and IR and NMR spectral data. The data of structural importance are summarized in Table I. These reagents are very soluble in common organic solvents and can be handled under ordinary conditions.⁹

Amino Protection with Alkyl a-Methoxyvinyl Carbonates 1d-f. The reaction of the carbonates 1d-f with amines $2\mathbf{a}-\mathbf{g}$ is generally carried out by employing

equivalent amounts of the reagent and amine in an inert solvent such as methylene chloride or acetonitrile and usually brought to completion at low temperature for a short period to give a quantitative yield of the corresponding N-tert-butoxycarbonylated (N-Boc), N-benzyloxycarbonylated (N-Z), and N-[β -(trimethylsilyl)ethoxy]carbonylated (N-Tmseoc) amines 3a-k, respectively (Scheme II). In the case of amino acids, carboalkoxylation was performed by stirring a dioxane-water solution of amino acids 2h-m with equivalent amounts of the reagent for a short period to give a quantitative yield of the corresponding N-Boc, N-Z, and N-Tmseoc amino acids (31-v). All known products were identified by comparison with authentic samples. New compounds were characterized by ¹H NMR, IR, exact mass, and analytical data. The amino acids used, with the exception of glycine, are of L configuration. The reaction conditions, yields, and physical data are summarized in Table II. The advantages of these reagents are found in the reaction conditions, the high yields, the absence of base except for the starting amine, easiness of procedures, and formation of volatile methyl acetate as a single side product.

As explained in the previous paper,^{1a} the reaction occurs by initial addition of the amine to the carbonyl carbon of 1d-f, subsequent decomposition proceeding with an interor intramolecular proton transfer accelerated by a favorable enol-keto transformation.¹⁰

⁽⁷⁾ A small quantity of 1d-f was detected in the reaction mixture on monitoring by TLC.

⁽⁸⁾ Phosgene was generated in situ by treatment of trichloromethyl chloroformate with active carbon: Masuyama, A. J. Synth. Org. Chem. Jpn. 1976, 34, 431 and references cited therein. Trichloromethyl chloroformate was obtained from Hodogaya Chemical Co., Ltd., Tokyo.

⁽⁹⁾ They do not polymerize at room temperature or upon distillation and can be allowed to stand at room temperature for a few weeks or to be stored in the refrigerator for more than several months after the reagent bottle is flushed with nitrogen or argon.

⁽¹⁰⁾ Recently we have reported analogous types of useful silylating and acetylating reagents using enol-keto transformations: (a) Kita, Y.; Haruta, J.; Segawa, J.; Tamura, Y. Tetrahedron Lett. 1979, 4311. (b) Kita, Y:; Segawa, J.; Haruta, J.; Tamura, Y. Tetrahedron Lett. 1980, 3779. (c) Tamura, Y.; Yoshimoto, Y.; Sakai, K.; Haruta, J.; Kita, Y. Synthesis 1980, Kita, Y.; Haruta, J.; Fujii, T.; Segawa, J.; Tamura, Y. Synthesis
 1981, 451. (e) Kita, Y.; Segawa, J.; Haruta, J.; Yasuda, H.; Tamura, Y.
 J. Chem. Soc., Perkin Trans. 1, 1982, 1099.

⁽¹¹⁾ Baumgarten, H. E.; Smith, H. L.; Staklis, A. J. Org. Chem. 1975, 40. 3554.

⁽¹²⁾ Ben-Ishai, D.; Berger, A. J. Org. Chem. 1952, 17, 1564.
(13) Schnabel, E. Justus Liebigs Ann. Chem. 1967, 702, 188.
(14) DeTar, D. F.; Silverstein, R.; Rogers, F. F., Jr. J. Am. Chem. Soc.

^{1966, 88, 1024.}

		Table II. Preparation of N-Boc, N	V-Z, and N-Tms	seoc Amines and Amino Acids
amine 2	product 3 ^a	reaction conditions	yield, ^b %	bp, ^c $^{\circ}$ C (torr) [mp, ^{c,d} $^{\circ}$ C (recryst solv)] [α] _D (c, solv; temp, $^{\circ}$ C), ^e de
Ph VH2 (2a)	Ph VH- Boc (3a)	1d, CH ₃ CN, 55 °C, 10 h	92 (85)	[53-54 (ligroin)]
	Ph VH-2 (3b)	1e, $CH_2 CI_2$, 20 °C, 3.5 h	98 (95)	[83.5-84 (petroleum ether)]
	PhNH - Tmseoc (3c)	1f, CH ₂ Cl ₂ , 20 °C, 1 h	90 (73)	158-160 (3.0)
Ph VHCH3 (2b)	PhBoc 3d	1d, CH ₃ CN, 50 °C, 2.5 h	66 (77)	73-74 (11)
	Ph CH3	1e, CH ₃ CN, 20 °C, 0.5 h	95 (76)	173-174 (2)
	Phower CH3 Tmseec 3f	1f, CH ₁ Cl ₁ , 20 °C, 1 h	90 (80)	114-115 (0.9)
Ph (2c)	Ph VH-Tmseoc (3g)	1f, CH_2Cl_2 , 20 °C, 1 h	94 (60)	174-175 (22)
2d	3B	1f, CH2Cl2, 20°C, 0.5 h	95 (87)	[69.5-70.5 (<i>n</i> -hexane)]
2e (0 N-Tm3eoc	1f, CH ₂ Cl ₂ , 20 °C, 0.5 h	97 (75)	92-93 (0.8)
2f	3j	1f, CH ₂ Cl ₂ , 20 °C, 2 h	90 (85)	99-100 (1)
но ^{NH2} (2g)	HO NH-Tmseoc (3k)	1f, $CH_2 Cl_2$, 20 °C, 1 h	95 (86)	143-145(2)
Gly (2h) Gly (2h) Ala (2i) Phe (2j) Pro (2k) Val (2) He (2m) Val (2) He (2m) a The microanalyses of products ($\geq 95\%$) was del products ($\geq 95\%$) was del products ($\geq 95\%$) was del products ($\geq 95\%$) us a del product ($\geq 10^{-77}$; $3n$, $47-48^{-1}$ T (-77 ; $3n$, $119-120$; 30 , 112^{-77} ; $76-77$; $3n$, $112, 9-120$; 30 , 112^{-77} ; $76-77$; $3n$, $112-9-120$; 30 , 112^{-17} ; $76-77$; $3n$, $112, 9-120$; 30 , 112^{-112} ; $76-77$; $3n$, $112, 9-120$; 30 , 112^{-112} ; $76-77$; $3n$, $112, 9-120$; 30 , 112^{-112} ; $76-77$; $3n$, $112, 9-120$; 30 , 112^{-112} ; $76-77$; 30 , 112^{-12} ; 30 , 112^{-12} ; $76-77$; 25^{-0} C; 31 , 112^{-9} ; 9 (c 2.01, 120^{-12} ; 25^{-0} C; 112^{-10} ; 9 (c 2.01, 120^{-12} ; 112^{-10	Boc-Gly (31) Z-Gly (3n) Traseoc-Gly (3n) Boc-Ala (3o) Z-Ala (3p) Boc-Phe (3q) Z-Ala (3p) Boc-Phe (3q) Z-Phe (3r) Boc-Phe (3g) Z-Phe (3g) S-Phe (3g) Boc-Phe (3g) Boc-Phe (3g) S-Phe (3g) Boc-Phe (3g) Boc-Val (3g) Boc-Ile (3g) Boc-Val (3g) B	1d, dioxane-H,O, 20 °C, 6 h 1d, dioxane-H,O, 20 °C, 15 h 1f, dioxane-H,O, 20 °C, 15 h 1d, dioxane-H,O, 20 °C, 15 h 1d, dioxane-H,O, 20 °C, 5 h 1d, dioxane-H,O, 20 °C, 7,5 h 1d, dioxane-H,O, 20 °C, 15 h 1d, dioxane-H,O, 20 °C, 11, ¹⁸ 85-87 ^e 95, 3q, 74-78 °C; 3r, 84-85 ^e 84.5 °C; 3q, 74-78 °C; 3r, 84-85 ^e 90 ints (in °C) are as following des ^e 84.5 °C, 3q, 74-78 °C; 3r, 84-85 ^{in + 5.1} (c 2, EtOH), 22 °C, lit. ²⁰ -6 ^{in + 5.1} (c 2, EtOH), 20 °C, lit. ²⁰ -6 ^{in + 5.1} (c 2, EtOH), 20 °C, lit. ²⁰ -6 ^{in + 5.1} (c 2, EtOH), 20 °C, lit. ²⁰ -6 ^{in + 5.1} (c 2, EtOH), 20 °C, lit. ²⁰ -6 ^{in + 5.1} (c 2, EtOH), 20 °C, lit. ²⁰ -6 ^{in + 5.0} (c 2, 005, ACOH), 25 °C, lit. ²⁰ -6 ^{in + 5.0} (c 2, 005, ACOH), 25 °C, lit. ²⁰ -6 ^{in + 5.0} (c 2, 005, ACOH), 25 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 005, ACOH), 25 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 005, ACOH), 20 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 005, ACOH), 20 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 01), 20 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 01), 20 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 01), 20 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 01), 20 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 01), 20 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 01), 20 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 01), 20 °C, lit. ²⁰ -6 ^{in + 50} (c 2, 6, 01), 20 °C, lit. ²⁰ (c 2, 01), 20 °C, lit. ²⁰ (c 1), lit. ²⁰ (c 2) lit. ²⁰	96 990 990 999 991 991 98 98 98 98 96 94 94 94 94 923.5-1 3a, lit. ¹¹ 53-5, 3a, lit. ¹² 53-5, 3a, lit. ¹² 53-5, 3a, lit. ¹³ 53-5, 5-54 5-24.9 5-24.9 51.0 (c 2, AcOI lit. ¹³ + 2.5 (c 1, lit. ¹³ + 2.5 (c 1, lit. ¹⁴ + 5, 2) (c 2, AcOI lit. ¹⁴ + 2.5 (c 1, lit. ¹⁵ + 2.5 (c 1, lit. ¹⁶ + 2.5 (c 1, lit. ¹⁶ + 2.5 (c 1, lit. ¹⁷ + 2.5 (c 1, lit. ¹⁸ + 2.5 (c 1, lit. ¹⁹ + 2.5 (c 1, lit. ¹⁰ + 2.	$ \begin{array}{l} \label{eq:constraints} \\ [88-89] (AcOEt-petroleum ether)] \\ [88-87] (Petroleum ether)] \\ [123] (F17-48] (petroleum ether)] \\ [80-81] (ether-petroleum ether)] \\ [80-87] (AcOEt-petroleum ether)] \\ [80-87] (AcOEt-petroleum ether)] \\ [86-87] (AcOEt-petroleum ether)] \\ [86-87] (AcOEt-petroleum ether)] \\ [76-77] (AcOEt-petroleum ether)] \\ [78-79] (AcOEt-petroleum ether)] \\ -5.64 (0.46, AcOH; 25) \\ -5.64 (0.792, AcOH; 25) \\ -7.33, 11t.^{13} -95-55, 11t.^{13} -91-97; 11t.^{14} -133 (1.73, 178-90) 11t.^{48} \\ -2.85 (1.73, 73, 11t.^{13} -136-137; 11t.^{16} -133 (1.73, 11t.^{13} -134-58) (11t.^{48} -0.8) \\ -2.65 (11t.^{13} -601, 120, 20, 20) \\ -2.64 (11t.^{13} -601, 20, 20) \\ -5.64 (10, 10, 10, 20, 20) \\ -5.64 (10, 10, 20, 20) \\ -5.64 (10, 10, 20, 20) \\ -5.64 (10, 10, 20, 20) \\ -5.64 (10, 10, 20, 20) \\ -5.64 (10, 10, 20) \\ -5.64 (10, 10, 20, 20) \\ -5.64 (10, 10, 20) \\ -5.64 (10, 10, 20) \\ -5.64 (10, 10, 20) \\ -5.64 (10, 10, 20) \\ -5.64 (10, 20) \\ -5.64 (10, 10) \\ -5.64 (10, 20) \\ -5.64 (10, 10) $

Experimental Section²³

Preparation of Bis[(Carbomethoxy)methyl]mercury. Through a stirred suspension of mercury(II) oxide (21.7 g, 0.1 mol) and mercury(II) acetate (31.8 g, 0.01 mol) in dry methanol (217 mL) at room temperature was gently bubbled ketene, generated by the thermal decomposition of acetone. The reddish suspension turned into a white suspension. Stirring for an additional 12 h under the same conditions gave a gray clear solution. The reaction mixture was concentrated in vacuo to give a white solid. The solid was washed with ether, dried under reduced pressure, and recrystallized from ethyl acetate to give the mercury compound: 18.7 g (54%); mp 98-99 °C (lit.6 mp 100 °C); IR (CHCl₃) 1680, 1240 cm⁻¹; NMR (CDCl₃) δ 2.14 (s, 4 H), 3.64 (s, 6 H).

General Preparation of Alkyl a-Methoxyvinyl Carbonates (1a, d-e) by Method B (Hood!). To a well-stirred dry methylene chloride solution of phosgene⁸ (3.4 M, 33 mL, 115 mmol) was added dropwise a solution of pyridine (10.9 g, 138 mmol) in methylene chloride (110 mL) at -20 °C over 5 min under argon. White-blue crystals precipitated with the addition of pyridine, and stirring was continued for 15 min under the same conditions. Then, a solution of bis[(carbomethoxy)methyl]mercury (50 g, 140 mmol) in dry methylene chloride (115 mL) was added dropwise to the cooled stirred mixture, which turned yellow and then was stirred for 1 h under the same conditions. To the resultant orange mixture was added dropwise a solution of the corresponding alcohol (345 mmol) in dry methylene chloride (58 mL) over 5 min under argon. The mixture was stirred at -20 °C for 15 min and at 0 °C for 30 min. n-Pentane (300 mL) was added to the stirred mixture, which was stirred for another 30 min and then at 25 °C for 30 min, while a red syrup was formed. After much of the excess phosgene was blown out of the system with argon (connected to a hood aspirator), the solution was separated from the syrup, and the residual syrup was extracted with ether (2×50) mL). The combined organic layer was washed with water $(3 \times$ 100 mL) and saturated aqueous sodium chloride (100 mL), dried over MgSO₄, and concentrated. Distillation gave a 55-73% yield of the desired carbonates (1d-f). The results are listed in Table I.

Similarly, ethyl α -methoxyvinyl carbonate (1a), which was obtained in a 43-54% yield by method A, was prepared: 88% yield; bp 85-91 °C (24 mmHg) [lit.1a bp 88-90 °C (26 mmHg)].

Typical Procedure for Conversion of Amine into (Carboalkoxy)amine. To a stirred solution of benzylamine (2a, 1 mmol) in methylene chloride (5 mL) was added 1e (1.1 mmol) at room temperature. After 3.5 h, the solvent was removed in vacuo, and the residual syrup was tritulated with petroleum ether to give crystals. Recrystallization from petroleum ether gave pure (benzyloxycarbonyl)benzylamine (3b), identical in all respects with an authentic sample.

The unknown (carboalkoxy)amines 3c-k prepared from the appropriate alkyl α -methoxyvinyl carbonates and amines are as follows.

[[β-(Trimethylsilyl)ethoxy]carbonyl]benzylamine (3c): NMR (CDCl₃) δ 0.04 (s, 9 H) 1.01 (br t, 2 H), 4.16 (br t, 2 H), 4.28 (d, 2 H), 4.4-5.2 (br s , 1 H), 7.23 (s, 5 H); IR (CHCl₃) 1700 cm⁻¹. Anal. Calcd for C₁₃H₂₁NO₂Si: C, 62.11; H, 8.42; N, 5.57. Found: C, 62.35; H, 8.62; N, 5.68.

N-(tert-Butoxycarbonyl)-N-methylbenzylamine (3d): NMR (CDCl₃) δ 1.48 (s, 9 H), 2.81 (s, 3 H), 4.43 (s, 2 H), 7.72 (s, 5 H); IR (CHCl₃) 1680 cm⁻¹; exact mass calcd for $C_{13}H_{19}NO_2$ 221.1415, found 221.1420.

N-(Benzyloxycarbonyl)-N-methylbenzylamine (3e): NMR (CDCl₃) δ 2.88 (s, 3 H), 4.49 (s, 2 H), 5.18 (s, 2 H), 7.25 (s, 10 H); IR (CHCl₃) 1670 cm⁻¹. Anal. Calcd for C₁₆H₁₇NO₂: C, 75.27; H, 6.71; N, 5.49. Found: C, 75.23; H, 6.83; N, 5.51.

N-[[β -(Trimethylsilyl)ethoxy]carbonyl]-N-methylbenzylamine (3f): NMR (CDCl₃) & 0.05 (s, 9 H), 1.06 (br t, 2 H), 2.81 (s, 3 H), 4.21 (br t, 2 H) 4.43 (s, 2 H), 7.20 (s, 5 H); IR (CHCl₃) 1670 cm⁻¹. Anal. Calcd for C₁₄H₂₃NO₂Si: C, 63.35; H, 8.73; N, 5.28. Found: C, 63.13; H, 8.83; N, 5.51.

N-[[β -(Trimethylsilyl)ethoxy]carbonyl]phenethylamine (3g): NMR (CDCl₃) δ 0.04 (s, 9 H), 0.98 (br t, 2 H), 2.80 (t, 2 H), 3.43 (q, 2 H), 4.15 (br t, 2 H), 7.23 (s, 5 H); IR (CHCl₃) 1700 cm⁻¹. Anal. Calcd for C14H23NO2Si: C, 63.35; H, 8.73; N, 5.28. Found: C, 63.67; H, 8.78; N, 5.36.

N-[[\$-(Trimethylsilyl)ethoxy]carbonyl]tryptamine (3h): NMR (CDCl₃) δ 0.05 (s, 9 H), 0.94 (br t, 2 H), 2.90 (br t, 2 H), 3.44 (br q, 2 H), 4.14 (br t, 2 H), 4.30 (br s, 1 H), 6.6-7.7 (m, 5 H), 8.43 (br s, 1 H); IR (CHCl₃) 1690 cm⁻¹. Anal. Calcd for C₁₆H₂₄N₂O₂Si: C, 63.12; H, 7.94; N, 9.20. Found: C, 63.38; H, 8.09: N. 9.32.

N-[[β -(Trimethylsilyl)ethoxy]carbonyl]morphorine (3i): NMR (CDCl₃) δ 0.05 (s, 9 H), 1.01 (br t, 2 H), 3.43 (m, 8 H), 4.12 (br t, 2 H); IR (CHCl₃) 1670 cm⁻¹. Anal. Calcd for C₁₀H₂₁NO₃Si: C, 51.91; H, 9.15; N, 6.05. Found: C, 51.85; H, 9.35; N, 6.19.

N-[[β -(Trimethylsilyl)ethoxy]carbonyl]imidazole (3j): NMR (CDCl₃) δ 0.06 (s, 9 H), 1.15 (br t, 2 H), 4.46 (br t, 2 H), 7.0 (br s, 1 H), 7.35 (br s, 1 H), 8.06 (br s, 1 H); IR (CHCl₃) 1740 cm⁻¹. Anal. Calcd for $C_7H_{16}N_2O_2Si$: C, 50.91; H, 7.60; N, 13.19. Found: C, 50.93; H, 7.61; N, 13.33.

 γ -[[[β -(Trimethylsilyl)ethoxy]carbonyl]amino]propanol (3k): NMR (CDCl₃) δ 0.05 (s, 9 H), 1.0 (br t, 2 H), 1.72 (q, 2 H), 3.30 (q, 2 H), 3.67 (br q, 2 H), 4.13 (br t, 2 H), 4.95 (br s, 1 H); IR (CDCl₃) 1680 cm⁻¹. Anal. Calcd for C₉H₂₁NO₃Si: C, 49.28; H, 9.65; N, 6.39. Found: C, 49.21; H, 9.77; N, 6.67.

Typical Procedure for Conversion of an Amino Acid into a (Carboalkoxy)amino Acid. To a solution of L-phenylalanine (2j, 1 mmol) in dioxane-water (1:1, 4 mL) was added triethylamine (1.5 mmol). After the mixture was stirred at room temperature for 30 min, a solution of 1d (1 mmol) in dioxane (0.5 mL) was added, and the mixture was stirred at room temperature for 5 h, acidified by 5% methanolic citric acid (pH 3-5), and extracted with ethyl acetate $(3 \times 15 \text{ mL})$. The extract was washed with saturated aqueous sodium chloride, dried over MgSO4, and concentrated in vacuo to give a solid, which was recrystallized from ether-petroleum ether to give pure (tert-butoxycarbonyl)-Lphenylalanine (3q), identical in all respects with an authentic sample.^{3a}

The unknown [[β -(trimethylsilyl)ethoxy]carbonyl]glycine (3n) was prepared from 1f and glycine: NMR (CDCl₃) δ 0.05 (s, 9 H), 1.01 (br t, 2 H), 3.95 (d, 2 H), 4.16 (br t, 2 H), 5.24 (br s, 1 H), 7.87 (br s, 1 H); IR (CDCl₃) 1710 cm⁻¹. Anal. Calcd for C₈H₁₇NO₄Si: C, 49.28; H, 9.65; N, 6.39. Found: C, 49.21; H, 9.77; N, 6.67.

Acknowledgment. We thank Mr. Jun Segawa and Mr. Takehiko Fujii for technical assistance.

Registry No. 1a, 74877-64-8; 1d, 81616-10-6; 1e, 81616-11-7; 1f, 81616-12-8; 2a, 100-46-9; 2b, 103-67-3; 2c, 64-04-0; 2d, 61-54-1; 2e, 110-91-8; 2f, 288-32-4; 2g, 156-87-6; 2h, 56-40-6; 2i, 56-41-7; 2j, 63-91-2; 2k, 147-85-3; 2l, 72-18-4; 2m, 73-32-5; 3a, 42116-44-9; 3b, 39896-97-4; 3c, 81616-13-9; 3d, 81616-14-0; 3e, 81616-15-1; 3f, 81616-16-2; 3g, 81616-17-3; 3h, 81616-18-4; 3i, 81616-19-5; 3j, 81616-20-8; 3k, 81616-21-9; 3l, 4530-20-5; 3m, 1138-80-3; 3n, 81616-22-0; 30, 15761-38-3; 3p, 1142-20-7; 3q, 13734-34-4; 3r, 1161-13-3; 3s, 15761-39-4; 3t, 1148-11-4; 3u, 13734-41-3; 3v, 13139-16-7; bis[(carbomethoxy)methyl]mercury, 3600-21-3; phosgene, 75-44-5; ethyl alcohol, 64-17-5; tert-butyl alcohol, 75-65-0; benzyl alcohol, 100-51-6; 2-(trimethylsilyl)ethanol, 2916-68-9.

⁽¹⁵⁾ Stewart, F. H. C. Aust. J. Chem. 1965, 18, 1699.

⁽¹⁶⁾ Stewart, F. H. C. Aust. J. Chem. 1930, 16, 1635.
(16) Bayer, E.; Jung, G.; Hagenmaier, H. Tetrahedron 1968, 24, 4853.
(17) Hunt, M.; du Vigneaud, V. J. Biol. Chem. 1938, 124, 699.
(18) Wünsch, E.; Wendlberger, G. Chem. Ber. 1968, 97, 2504.
(19) Grassmann, W.; Wünsch, E. Chem. Ber. 1958, 91, 462.
(20) Clayton, D. W.; Farrington, J. A.; Kenner, G. W.; Turner, J. M. J. Chem. Soc. 1957, 1398.

 ⁽²¹⁾ Schröder, E. Justus Liebigs Ann. Chem. 1966, 692, 241.
 (22) Berger, A.; Kurtz, J.; Katchalski, E. J. Am. Chem. Soc. 1954, 76, 5552

⁽²³⁾ IR absorption spectra were recorded on a Shimadzu IR-27G spectrometer, ¹H NMR spectra on a Hitachi R-20A spectrometer with tetramethylsilane as an internal standard, and low- and high-resolution mass spectra on a JEOL JMS D-300 instrument, with a direct-inlet system.